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Abstract—Every safety case should describe the deployment
domain and environmental constraints within which the system
is expected to operate. Recently many AI and autonomous system
safety standards have proposed the use of a detailed formal de-
scription of the Operating Domain for autonomous safety critical
systems. This OD is based on human understanding of variations
and expected limitations, and is used to shape the data collection,
testing, validation, verification and operational deployment of
the system. For example, we assume an autonomous car will be
driving on specific road layouts, with localised markings/signage,
weather, and shared with a set of other defined road users.
However, a Machine Learning (ML) components OD (e.g., that
of a Deep Neural Network) is fundamentally different to ours,
and is based on numerical data arrays. Our position is that over-
reliance on a human-centred OD to shape V&V will lead to false
confidence, and safety issues being missed. Instead we propose
effort is spent reverse engineering the ML’s view of the world, to
better understand the OD’s gaps, areas of uncertainty and hence
derive strategies for how to mitigate related hazards.

I. INTRODUCTION

The standard definition of a safety case is typically a variant
of ”a structured argument, supported by evidence, intended
to justify that a system is acceptably safe for a specific
application in a specific operating environment” [1]. One of
the key elements is what the specific operating environment
will be. Safety engineers will make assumptions about what
could happen within that environment, as well as (usually)
providing limited safety guarantees outside of it. For example,
a particular system may be operated safely within a particular
temperature range, but with limitations during high humidity.
Physical components are engineered to work in that range, and
simple sensor checks can determine when the safe ranges and
limitations are breached.

This approach is justified where humans are involved in
design and operation of the system, and where system com-
ponents can be designed to work in the operating environment,
and because a human operator will have a broadly similar un-
derstanding of it as the designers and can detect and act when
the systems falls outside the defined operating environment.
However, for AI-enabled Autonomous Systems (AS) neither
of these conditions hold. AI, such as Machine Learning (ML)
doesn’t understand the context within which it is operating.
Additionally, even when following robust engineering practice
for AI/ML, there is a very high degree of uncertainty in the
performance of black-box AI components such as ML in the
domain they are designed for [2].

Fig. 1. Street art mis-identified as a bus by Yolo v5[6] (Picture courtesy of
pexels.com)

Nevertheless, many AS standards (e.g., [3], [4]) are converg-
ing towards the development of a rigorously defined Operating
Design Domain (ODD) within which the ML is designed to
operate safely. SAE J3016 [4] defines the ODD as ”Operating
conditions under which a given driving automation system or
feature thereof is specifically designed to function, including,
but not limited to, environmental, geographical, and time-of-
day restrictions, and/or the requisite presence or absence of
certain traffic or roadway characteristics”. [5] describes this
in more broad terms as the Operating Domain Model (ODM),
stressing the need to determine when we have fallen outside of
the ODM and continue safely where possible. In all cases the
ODM/ODD description will constrain the data for the training
regime for ML components, and help to define the parameters
for verification.

ML’s lack of ”understanding” of the ODM/ODD it has
been trained to operate in leads to amusing situations (see
Figure 1 where street art on a building has been misclassified
as a bus), but also contributes to deadly consequences such
as the fatal collision with a pedestrian in Tempe, Arizona
shows [7]. The automated driving system failed to recognise
the pedestrian pushing a bicycle, repeatedly changing classi-
fication and losing trajectory information, and failing to warn
the distracted safety driver. Further, formalising and tightening
the ODM/ODD, widening testing for more edge cases and
even training with increasing amounts of data doesn’t address
the fundamental misalignment between the human described
ODD and the ML’s actual ODD. At best it will plug a few
more holes. We may reduce some uncertainty, but the cost



Fig. 2. OD interrogation concept

and effort of doing so may not be proportional to the benefits.
Worse, we may gain a false sense of confidence from doing
so.

Our position is that effort could be more effectively targeted
at interrogating the ML to determine its actual OD. Then we
can identify appropriate system safety mitigations to manage
those gaps and produce more effective out of OD detectors.
This process is summarised in Figure 2. We first use the
human defined OD for design of the ML. Then we interrogate
the ML model to understand it’s actual OD, finding the gaps
represented on the right (which may vary over time and data
inputs), to produce a refined OD description, which can be
used for further safety analysis.

II. POSSIBLE APPROACHES AND RESEARCH CHALLENGES

If we accept this position then the immediate research
question is how do (can) we interrogate the ML to determine
the actual OD? We then pose two further research questions.
First, how can we use the ML’s representation of its OD
to identify appropriate monitoring and mitigation strategies?
Second, how do we ensure that the process is agile enough to
support rapid change cycles common for ML?

A. Interrogation

There is a substantial amount of research in querying ML
resilience, out of distribution detectors and so on. We propose
to build on this body of work to interrogate the ML and
produce an OD description which is representative of how
the ML really ”understands” the world. This can be used to
support safety analysis where it can be determined if there
is a system level mitigation that can be used to counter
gaps/misunderstanding, and/or whether more data/training can
improve the situation. This is an area where we believe there
is a key difference between our proposal and current practice
- we would only propose additional training cycles if the gap
poses a severe enough risk and it cannot be mitigated in a
more effective way.

A substantial challenge is that the approach will require
some translation between the ML’s internal model to an
approximation of the real-world useful for safety analysis.

B. Monitoring the real OD

Assuming we have a better definition of the ML’s actual
OD, we may need to monitor for situations which are outside
of it. Again, this is expected to be challenging depending on

the nature of the gap and the need to translate data from real-
world sensors. There will be additional temporal challenges to
consider, such as whether a single transient or even relatively
frequent drop from the OD may be tolerable. It would also be
desirable to make this monitoring continue the interrogation
process and identify further gaps. This is not too far from
existing practice, but again we emphasise the need to monitor
for the real OD, and not just assume that situations that are
difficult for humans (such as fog or rain) will necessarily pose
the same challenge for the ML, e.g., in image classification.

C. Supporting rapid change

One final challenge we cannot ignore is the nature of the
ML design process and frequent training cycles. Even if we
reduce the amount of retraining, when we make an update due
to an intolerable gap in the OD, if we discover a substantial
change in the ML’s OD then our system safety approach will
also need updating, including changes to the design. Ideally,
we must constrain the impact on the real OD as much as
possible to limit safety assurance impact [8].

III. CONCLUSIONS

In this paper we have proposed that we reverse engineer the
MLs understanding of the world to develop a more realistic,
and less ”human-centred” approach to defining and refining an
OD. At present we are unsure how feasible such an approach
would be, but we believe the potential benefits could be
substantial and research in this area could improve current
practices to develop and assure AI-based safety critical-AS.
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